Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yana M. Syah, ${ }^{\text {a }}$ Nyoman S. Suastri, ${ }^{\text {a }}$ Jalifah Latip ${ }^{\text {b }}$ and Bohari M. Yamin ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Institut Teknologi Bandung, Jalan Ganeca 10, Bandung 40132, Indonesia, and ${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.054$
$w R$ factor $=0.149$
Data-to-parameter ratio $=15.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

4,5-Dimethoxy-2-(1-methoxy-3-phenylallylidene)-cyclopent-4-ene-1,3-dione (methyl linderone)

The title compound, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5}$, was isolated from the plant Lindera poliantha. The cyclopentenedione and phenyl rings are connected by the central $\mathrm{C}_{3} \mathrm{O}$ fragment, which makes dihedral angles with these rings of 7.10 (6) and $16.24(10)^{\circ}$, respectively.

Comment

Methyl linderone, (I), is a cyclopent-4-ene-1,3-dione derivative isolated from several plants such as Lindera lucida (Leong et al., 1998). The biological importance and structural diversity of the cyclopentanoid natural products have made these compounds valuable synthetic targets (Liebeskind \& Bombrun, 1994). In the present study, the title compound was obtained from the plant Lindera poliantha, collected from the Cibodas Botanical Garden, Indonesia. The molecule is discrete (Fig. 1), with normal bond lengths and angles (Allen et al., 1987). The endocylic $\mathrm{C} 4=\mathrm{C} 5$ double bond is slightly shorter than the exocyclic $\mathrm{C} 2=\mathrm{C} 6$ double bond (Table 1). The substituted cyclopentenedione ring, the phenyl ring and the central connecting O5/C6/C7/C8 fragment are essentially coplanar. The maximum deviation from the plane is 0.054 (2) \AA, found for C7. The dihedral angles between the central $\mathrm{O} 5 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8$ fragment and the cyclopentenedione and phenyl rings are 7.10 (6) and $16.24(10)^{\circ}$, respectively. The $\mathrm{O} 5-\mathrm{C} 15$ and $\mathrm{O} 3-\mathrm{C} 17$ bonds lie markedly out of the plane of the molecule, with torsion angles $\mathrm{C} 15-\mathrm{O} 5-\mathrm{C} 6-\mathrm{C} 2$ and $\mathrm{C} 17-\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3$ of -66.7 (3) and 52.9 (2) ${ }^{\circ}$, respectively. The presence of a number of intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) may contribute to the stability and planarity of the molecule.

(I)

Experimental

Lindera polyantha was collected from the Cibodas Botanical Garden, West Java, Indonesia, in July 2004. The powdered dried wood of the plant (1 kg) was macerated with MeOH at room temperature to yield a dark-brown extract $(104 \mathrm{~g})$. A portion $(50 \mathrm{~g})$ of the MeOH extract was partitioned into EtOAc to give an EtOAc fraction (17.5 g). Fractionation of the EtOAc fraction using chromatography (silica gel) eluted with n-hexane-EtOAc of increasing polarity gave three

Received 19 April 2005 Accepted 22 April 2005 Online 7 May 2005
major fractions $A-C$ (670,120 and 600 mg , respectively). Fraction A was then purified using radial chromatography (silica gel), eluted with n-hexane-EtOAC (9:1) to afford methyl linderone (70 mg) as paleyellow crystals; m.p. 348-349 K (literature 348 K ; Leong et al., 1998). ${ }^{1} \mathrm{H}$ NMR (400 MHz): $87.93(1 \mathrm{H}, d, J=16.0 \mathrm{~Hz}, \mathrm{H}-8), 7.60(2 \mathrm{H}, d d, J=$ 8.0 and $2.0 \mathrm{~Hz}, \mathrm{H}-10 / 14), 7.51(1 \mathrm{H}, d, J=16.0 \mathrm{~Hz}, \mathrm{H}-7), 7.36(3 \mathrm{H}, m)$, 4.19, 4.18 (3H, 4.5-OMe), 4.09 (6-OMe); ${ }^{13} \mathrm{C}$ NMR: $\delta 60.0,60.1$ (5,6OMe), 64.5 (6-OMe), 109.6 (C-2), 121.4 (C-7), 128.5 (C-11/C13), 129.1 (C-10/14), 130.2 (C-12), 135.8 (C-9), 141.4 (C-8), 148.0, 149.1 (C-4,5), 165.6 (C-6), 184.9, 187.4 (C-1,-3), in agreement with the literature (Leong et al., 1998).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5} \\
& M_{r}=300.30 \\
& \text { Triclinic, } P \overline{1} \\
& a=7.380(3) \AA \\
& b=8.139(3) \AA \AA \\
& c=13.781(5) \AA \\
& \alpha=78.224(5)^{\circ} \\
& \beta=87.913(6)^{\circ} \\
& \gamma=68.280(5)^{\circ} \\
& V=752.1(5) \AA^{\circ}
\end{aligned}
$$

$$
Z=2
$$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.326 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 866
reflections
$\theta=1.5-26.4^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, pale yellow
$0.48 \times 0.32 \times 0.31 \mathrm{~mm}$

Data collection

Bruker SMART APEX area-
detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.954, T_{\max }=0.970$
8035 measured reflections

3079 independent reflections
2588 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-9 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.149$
$S=1.06$
3079 reflections
199 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0726 P)^{2}\right. \\
& \quad+0.1615 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}
\end{aligned}
$$

Molecular structure of the title compound, (I), with 50% probability displacement ellipsoids for the non-H atoms. H atoms are included as spheres of arbitrary radii.

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C1	$1.210(2)$	$\mathrm{C} 6-\mathrm{C} 2$	$1.357(3)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.219(2)$	$\mathrm{O} 5-\mathrm{C} 6$	$1.347(2)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.347(2)$	$\mathrm{O} 5-\mathrm{C} 15$	$1.412(2)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$-10.1(3)$	$\mathrm{C} 16-\mathrm{O} 4-\mathrm{C} 5-\mathrm{C} 4$	$11.0(3)$
$\mathrm{O} 5-\mathrm{C} 6-\mathrm{C} 2-\mathrm{C} 1$	$-7.1(3)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C7-H7A \cdots O2	0.93	2.35	$2.976(3)$	124
C8-H8A \cdots O5	0.93	2.36	$2.730(3)$	103
C15-H15B \cdots O1	0.96	2.34	$3.022(3)$	128
C16-H16C O3	0.96	2.52	$2.929(3)$	106
C17-H17C \cdots O2	0.96	2.36	$2.992(3)$	123

After the location of H atoms in a difference map, their geometrical parameters were idealized. The H atoms were allowed to ride on the parent C with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$ for CH_{3} and $1.2 U_{\text {eq }}(\mathrm{C})$ for CH groups.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Hibah B Batch I, Department of Chemistry, Institut Teknologi Bandung, and Universiti Kebangsaan Malaysia for their financial support and facilities.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.

Leong, Y.-W., Harrison, L. J., Bennet, G. J., Kadir, A. \& Connolly, J. D. (1998). Phytochemistry, 47, 891-894.
Liebeskind, L. S. \& Bombrun, A. (1994). J. Org. Chem. 59, 1149-1159.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2005 International Union of Crystallography

